

Geometric singular perturbation analysis of a Autocatalator model

Peter Szmolyan

Vienna University of Technology

joint work with: Ilona Kosiuk

<ロト < 回 > < 回 > < 回 > < 回 > .

Peter Szmolyan

- 2-d Autocatalator, slow-fast structure
- relaxation oscillation, asymptotics, numerics

イロト イボト イヨト イヨト

- a rescaling
- two scaling Regimes
- blow-up analysis

Peter Szmolyan

Autocatalator Model

$$\dot{a} = \mu - a - ab^2 \varepsilon \dot{b} = -b + a + ab^2$$
 (1)

a slow, b fast, $0 < \varepsilon \ll 1$, parameter $\mu > 0$

fast time scale $\tau := t/\varepsilon$

$$a' = \varepsilon(\mu - a - ab^2)$$

$$b' = -b + a + ab^2$$
(2)

Peter Szmolyan

Slow-fast subsystems

- The limiting systems for $\varepsilon = 0$:
 - the reduced problem

$$\dot{a} = \mu - a - ab^2$$

$$0 = -b + a + ab^2$$
(3)

• the layer problem

$$a' = 0$$

$$b' = -b + a + ab^2$$
(4)

<ロト <回ト < 回ト < 回ト < 回ト -

DQR

3

Peter Szmolyan

Rescaled system

Scaling regimes

Blow-up analysis

Dynamics of the layer problem

Peter Szmolyan

Fast dynamics

\mathcal{S} has

attracting branch S_a , b < 1

repelling branch S_r , b > 1

non-hyperbolic fold point $p_f = (\frac{1}{2}, 1)$

Peter Szmolyan

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ●

Dynamics of the reduced problem

Differentiate $a = \frac{b}{1+b^2}$ with respect t

$$\dot{a} = \frac{1 - b^2}{(1 + b^2)^2} \dot{b} = \mu - b$$

- singular at b = 1, unless $\mu = 1$ (canard!)
- equilibrium $b = \mu$
- $\bullet \ \dot{a}>0, \ b<\mu, \qquad \dot{a}<0, \ b>\mu$

Peter Szmolyan

ヘロト 人間 ト 人 田 ト 人 田 ト

E

590

Three different cases:

 $\mu < 1$, excitable

Peter Szmolyan

Three different cases:

Peter Szmolyan

Three different cases:

Peter Szmolyan

Three different cases:

Sar

For $\mu > 1$ we have a jump point at fold

good control for $\varepsilon \ll 1$, attraction onto $S_{a,\varepsilon}$ followed by jump, map: $\pi : \Sigma_{in} \to \Sigma_{out}$

Peter Szmolyan

Should we expect relaxation oscillation?

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q @

Peter Szmolyan

Rescaled system

Scaling regimes

Blow-up analysis

Should we expect relaxation oscillation?

Let's ask the computer!

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q @

Peter Szmolyan

Overview Autocatalator Relaxation oscillation Rescaled system Scaling regimes Blow-up analysis

A rather "big" surprise

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

3

590

Peter Szmolyan

Rescaled system

Scaling regimes

Blow-up analysis

Computers also scale things!

rescale by zooming in!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ⊙

Peter Szmolyan

590

This is closer to what we just proved

Peter Szmolyan

Rescaled system

Scaling regimes

Blow-up analysis

What did go wrong?

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q @

Peter Szmolyan

Let's check again what we did

$$a' = \varepsilon(\mu - a - ab^2)$$
$$b' = -b + a + ab^2$$

Peter Szmolyan

Let's check again what we did

$$a' = \varepsilon(\mu - a - ab^2)$$

$$b' = -b + a + ab^2$$

a slow, only valid for a, ab^2 bounded!!!

・ロト ・四ト ・ヨト ・ヨト э Sac

Peter Szmolyan

イロト イヨト イヨト イヨト 三日

Sac

Let's check again what we did

$$a' = \varepsilon(\mu - a - ab^2)$$
$$b' = -b + a + ab^2$$

a slow, only valid for a, ab^2 bounded!!!

a bounded, but b gets very large!

Peter Szmolyan

Rescaling for large b

GSPT valid for b = O(1)

$$a' = \varepsilon(\mu - a - ab^2)$$
$$b' = -b + a + ab^2$$

- $b = O(1/\varepsilon) \Rightarrow$ new scales, different asymptotic analysis
- critical manifold not compact ⇒ loss of normal hyperbolicity

・ロト ・四ト ・ヨト ・ヨト

Sac

3

Rescaling gives a super-fast system

New variables

$$a = A, \qquad b = \frac{B}{\varepsilon}, \qquad T = t/\varepsilon^2$$

Rescaled system

$$A' = \mu \varepsilon^{2} - A \varepsilon^{2} - A B^{2}$$

$$B' = -B\varepsilon + A \varepsilon^{2} + A B^{2}$$
(5)

where ' denotes differentiation with respect to T.

Peter Szmolyan

イロト イポト イヨト イヨト

The rescaled layer problem is simple but degenerate

• B = 0 non-hyperbolic, weakly repelling

Peter Szmolyan

\exists very degenerate singular periodic orbit γ_0

Peter Szmolyan

Overview Autocatalator

Blow-up analysis

Critical manifold A = 0 is normally hyperbolic

Peter Szmolyan

Critical maifold A = 0 perturbs to slow manifold

 $M_0 = \{(0, B) : B \in [\beta_0, \beta_1], \beta_0 > 0\}$ normally hyperbolic

Theorem: \exists attracting slow manifold M_{ε} , given as

$$A = h(B, \varepsilon), \quad B \in [\beta_0, \beta_1]$$

with

$$h(B,\varepsilon) = \varepsilon^2 \frac{\mu}{B^2} + O(\varepsilon^3)$$
 singular as $B \to 0$

slow flow on
$$M_arepsilon$$
 : $rac{dB}{d au} = -B + O(arepsilon), \quad au = arepsilon T = t/arepsilon$

Peter Szmolyan

Overview Autocatalator

Return mechanism: reduced flow B' = -B

Peter Szmolyan

Overview

How did the folded critical manifold dissapear?

Peter Szmolyan

There exist two Regimes with good asymptotic analysis

Regime 1: b = O(1) Regime 2: B = O(1), $b = 1/\varepsilon$

Peter Szmolyan

Overview Au

The fold is hidden in the nonhyperbolic line B = 0!!!

Peter Szmolyan

Can this be combined to prove existence of relaxation oscillation?

Peter Szmolyan

・ロト ・四ト ・ヨト ・ヨト

Sac

3

Overlap, matching, proof: ??????

Regime 1: b = O(1) Regime 2: B = O(1), $b = 1/\varepsilon$

Peter Szmolyan

・ロト ・四ト ・ヨト ・ヨト

Sac

3

Overlap, matching, proof: blow-up

Regime 1: b = O(1) Regime 2: B = O(1), $b = 1/\varepsilon$

Peter Szmolyan

イロト イポト イヨト イヨト

Main theorem

Theorem

For $\mu > 1$ and all ε sufficiently small there exists a unique periodic orbit γ_{ε} of system (5) and hence of the equivalent system (1) which tends to the singular cycle γ_0 for $\varepsilon \to 0$.

イロト 不得下 イヨト イヨト 二日

Sac

Proof: Blow-up analysis based on the extended system

$$A' = \mu \varepsilon^{2} - A \varepsilon^{2} - AB^{2}$$

$$B' = -\varepsilon B + A \varepsilon^{2} + AB^{2}$$

$$\varepsilon' = 0$$
(6)

- degenerate line l_A of equilibria: B = 0, $\varepsilon = 0$
- linearization at (A, 0, 0): triple eigenvalue $\lambda = 0$

Peter Szmolyan

The degenerate line is blown-up to a cylinder

blow up transformation

$$A = \bar{a}$$

$$B = r\bar{b}$$
 (7)

$$\varepsilon = r\bar{\varepsilon}$$

with

$$\bar{a} \in \mathbb{R}, \quad \bar{b}^2 + \bar{\varepsilon}^2 = 1, \quad r \in \mathbb{R}$$

line l_A blown up to cylinder $\mathbb{R} \times S^1$, i.e. $r =$

Peter Szmolyan

with

Blow-up transformation and charts K_1 and K_2

・ロト ・日・・日・・日・・ つくの

Peter Szmolyan

▲ロト ▲課 ト ▲ 臣 ト ▲ 臣 ト 二 臣 … の Q ()

Blow-up transformation and dynamics is described in charts

• chart
$$K_1$$
: $\bar{\varepsilon} = 1$, scaling chart

$$A = a_1, \quad B = r_1 b_1, \quad \varepsilon = r_1$$

• chart
$$K_2$$
: $\bar{b} = 1$, "compactification"

$$A = a_2, \quad B = r_2, \quad \varepsilon = r_2 \varepsilon_2$$

Peter Szmolyan

Chart K_1 covers Regime 1, i.e. the (a, b, ε) system

equations in chart K_1 :

$$a'_{1} = r_{1}(\mu - a_{1} - a_{1}b_{1}^{2})$$

$$b'_{1} = -b_{1} + a_{1} + a_{1}b_{1}^{2}$$

$$r'_{1} = 0$$

This is the original system with

$$a = a_1, \quad b = b_1, \quad \varepsilon = r_1,$$

transforming to chart $K_1 \Leftrightarrow$ undoing rescaling

Peter Szmolyan

イロト イポト イヨト イヨト

3

Chart K_2 covers Regime 2 and overlaps with Regime 1

equations in chart K_2

$$a' = -r(a + \varepsilon^{2}a - \varepsilon^{2}\mu)$$

$$r' = r(a + \varepsilon^{2}a - \varepsilon)$$

$$\varepsilon' = -\varepsilon(a + \varepsilon^{2}a - \varepsilon)$$
(8)

here ' denotes differentiation with respect to a rescaled time variable t_2 .

In chart K_2 we meet old friends!

invariant subspaces

- $\varepsilon = 0$ a' = -arr' = ar
 - critical manifolds L_s , L_b , S
 - $\mathbf{L}_{S}, \mathbf{L}_{0}, ,$
- r = 0

$$\begin{array}{rcl} a' &=& 0\\ \varepsilon' &=& (\varepsilon - a - \varepsilon^2 a)\varepsilon \end{array}$$

Peter Szmolyan

Geometric singular perturbation analysis of a Autocatalator model

drop subscript "2"

≡ ∽۹@

Sar

In the blown-up space there exists a desingularized singular cycle $\Gamma_0 = \omega_1 \cup \omega_2 \cup \omega_3 \cup \omega_4 \cup \omega_5$

Peter Szmolyan

イロト イボト イヨト イヨト

Existence of the limit cycle

Theorem

For sufficiently small ε the blown up vector field \overline{X} has a family of periodic orbits $\overline{\Gamma}_{\varepsilon}$ which for $\varepsilon = r\overline{\varepsilon} = 0$ tend to the singular cycle $\Gamma_0 = \omega_1 \cup \omega_2 \cup \omega_3 \cup \omega_4 \cup \omega_5.$

Peter Szmolyan

Proof is based on Poincare map $\Pi: \Sigma_1 \to \Sigma_1$

Π_1	$: \Sigma_1 \to \Sigma_2$	_	passage of the fold point p_f	
Π_1	$: \Sigma_1 \to \Sigma_2$	_	passage of the fold point p	f

- $\Pi_2: \Sigma_2 \to \Sigma_3$ passage of the hyperbolic line L_s
- $\Pi_3: \Sigma_3 \to \Sigma_4$ contraction and slow drift toward the vertical slow manifold
- $\Pi_4: \Sigma_4 \to \Sigma_5$ - passage of the nilpotent point q
- $\Pi_5: \Sigma_5 \to \Sigma_1 \quad \quad \text{transition towards}$ the attracting slow manifold.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Peter Szmolyan

Sar

Proof uses (known) blow-up of fold-point p_f and needs new (simple) blow-up of point q

Peter Szmolyan

- desingularization by blow up
- hidden details are visible
- blow-up gives scaling and overlap
- perturb from a well behaved limiting object

イロト イボト イヨト イヨト

- gain of hyperbolicity
- GSPT becomes applicable